Problem 1.14

The voltage $v(t)$ across a device and the current $i(t)$ through it are

$$
v(t)=20 \sin (4 t) \mathrm{V} \text { and } i(t)=10\left(1+e^{-2 t}\right) \mathrm{mA}
$$

Calculate:
(a) the total charge in the device at $t=1 s, q(0)=0$.
(b) the power consumed by the device at $t=1 \mathrm{~s}$.
[This 's' should not be italicized.]

Solution

Part (a)
Begin with the basic definition of current and integrate both sides with respect to time from 0 to 1.

$$
\begin{aligned}
\frac{d q}{d t} & =i(t) \\
\int_{0}^{1} \frac{d q}{d t} d t & =\int_{0}^{1} i(t) d t \\
q(1)-q(0) & =\int_{0}^{1} 10\left(1+e^{-2 t}\right) d t \mathrm{~mA} \\
q(1)-0 & =10 \int_{0}^{1}\left(1+e^{-2 t}\right) d t \mathrm{~mA}
\end{aligned}
$$

Therefore, the charge in the device at $t=1$ is

$$
\begin{aligned}
q(1) & =\left.10\left(t-\frac{1}{2} e^{-2 t}\right)\right|_{0} ^{1} \mathrm{mC} \\
& =10\left(1-\frac{1}{2} e^{-2}+\frac{1}{2}\right) \mathrm{mC} \\
& \approx 14.3 \mathrm{mC} .
\end{aligned}
$$

Part (b)

The power that the device consumes is

$$
p(t)=v(t) i(t)=[20 \sin (4 t) \mathrm{V}]\left[10\left(1+e^{-2 t}\right) \mathrm{mA}\right]=200\left(1+e^{-2 t}\right) \sin 4 t \mathrm{~mW} .
$$

At $t=1$ in particular,

$$
p(1)=200\left(1+e^{-2}\right) \sin 4 \mathrm{~mW} \approx-172 \mathrm{~mW} .
$$

